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Stimulated Raman scattering with strong damping: A simple theory of the spike phenomenon
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The classical stimulated Raman scattering system describing the resonant interaction between two electro-
magnetic waves and a fast relaxing medium wave is studied by introducing a systematic perturbation approach
in powers of the relaxation time. We separate amplitude and phase effects for these complex fields. The
analysis of the former shows the existence of a stagnation distance after which monotonic energy transfer
begins from one electromagnetic wave to the other, and this quantity is calculated. Concerning phase effects we
give the conditions for the formation of a Raman spike from an initial fast and large phase jump in one of the
waves. The spike evolution and width estimated from the reduced model agree with the results from numerical
simulations of the original system.

DOI: 10.1103/PhysRevE.71.036601 PACS nuni$)erd2.25.Bs, 42.65.Dr

I. INTRODUCTION with the numerical solution of the problefi0].

) o ] o From another point of view the SRS is an example in
The investigation of the transient effects in stimulated Rapptics of the very important phenomenon of three-wave in-
man scatteringSRS has a long history. The initial interest teraction. Its specificity is that two of the waves have equal
came from the study of Drufgt al. [1] who examined the velocities. A second well-known example is Mandelstam-
interaction of a strong laser pump pulse with a high-pressur@rillouin scattering where an optical wave interacts with
gas. They found that pulses of long duration get completelacoustic phonons. As well as SRS this interaction is now
depleted except in some cases where a very rapid and shottsed to amplify directly laser pulses propagating in an opti-
lived restoration occurs. Numerical simulations then showedaal fiber [11-13. Second-harmonic generation in noncol-
that this “spike” of pump radiation was connected to a rapidinear beams is another example of a three-wave interaction.
m phase shift or phase flip introduced in the initial StokesOverall this phenomenon is present in much of condensed
wave[2]. matter physics, from the scattering of spin waves on phonons
The theory of SRS is based on a very simple system of14] to the nonlinear optics of Bose-Einstein condensates
equations resulting from the Pluczek model of the interactiont 15,18 Therefore the results obtained for SRS can be trans-
of electromagnetic waves with molecular vibratiofgs4]. ~ Posed to these other contexts.

This is essentially the wave equation coupled to an osciIlatotrheHr‘;ree d;IL\JI(ran?/ri%rigtti%rr?ssﬁgdlai?gtehesgr?gta\;vgep:gr'zﬂfbgfil&pmgo%;
equation. Using a slowly varying envelope approximation’, ™. ? . S
d 9 y varying pe app derived from the IST method is not applicable. This is pre-

for the fields and assuming the Brillouin resonance condl—fely when one observes the Raman spike, where the pump

e e e e Y5 {hcation afer beig depleed diplays & harp burst of en
9 érgy, which lasts a small fraction of its initial duration. This

and a medium wavésee, for examplelS]). This system is  pnanomenon first observed in gases can be studied via nu-
interesting for its mathematical properties and can be foun erical simulations of the full equation,17]. These show

ig mang fier:ds. I;irsrt], in_the “mtit of Zero damping Chu and y+ the Raman spike can be seen only for large dissipation,
COtt.[. ] showed t at it can be written as zero-curvaturey, ,; j; appears with some delay, and that its amplitude decays
conditions for two differential operators, so that an invers

: Sor increasing propagation distances in the medium. Our aim
scattering transforniST) method[ 7] could be used to solve is to understand how this occurs—more precisely(itain-

coordinates at an initial timt. The theory of SRS leads t0 & | ticyjar estimate the distance necessary for a given trans-

boundary value problem where the fields are given for allfer (ii) explai - ; .

. . ) ) ; , plain the time delay of the Raman spilstagnation
times at a fixed location,. As illustrated in[8,9] the IST ey i) explain the position, width, and amplitude of the
method can be developed in this case as well but one neegg, o gpike as a function of the initial phase flip in the
to check independently that the potential decays sufﬁmentl;stokes wave, andv) understand the evolution of the fronts
fast at infinity. This approach was recently validated for the '

. L . . . -of the pump pulse.
model with group velocity dispersion by direct comparison We consider a simplified situation where the pump and

Stokes pulses are not Gaussian but almost rectangular. In this
case we will see that the effects of phase and amplitude can
*Electronic address: caputo@insa-rouen.fr be separated so that the magnitude of the wave intensities
"Electronic address: maimistov@pico.mephi.ru can be assumed to be independent of time in the spike re-
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gion, located in the middle of the pulses. The medium vari- The initial conditions for the system are
able can be expressed as an integral of the product of the ,
amplitudes of the interacting waves. This can be expanded x=0, a=ao(t), b=ag(t)pexpih(t),
using as a small parameterIlivherel' is the damping of wherea(t)— 0 for |t — o and the boundary condition
the medium variable. If we limit ourselves to the leading
term in this series, we obtain the well-known equations de- t=-x, =0,
scrlplng SR.S for continuous waves and V\.”t.h'n this approxiy, here the last equation indicates that the medium is initially
mation we find the Raman transfer coefficient. At the next ' ground state. The quantipy=¢"" is the initial ampli-
?hrderwe obta|n|§t1 sdyst'em'o;equagonf \;vheret:]he eVOIUI:,O?h de difference betweea and b; in most cases, we will

he purq_;; amrf’.' ude 1s n kep_en ent from h € ﬁne ?‘I' Sssumep<1 and [al,., to be of order 1 so thatal,
phase. Though it cannot take into account the phase flip et |bly=o. The terme(t) is a time dependent initial phase. In
fects causing the Raman spike, it should be adequate for ﬂ}ﬁe following we will assume thad, and ¢ are real
transient phenomena occurring on the fronts of the interact- E . A 200 1120 12
) : . Equations(3) and (4) are such thaD?(t)=|al?+|b|? is
ing pulses. To get coupling between the phase and ampli- dependent ofx and thereforeD(t)=|al2+|b|?=a3(t)(1
tudes of the pulses we need to consider the third-order terdj > P . . ! —%
in the expansion of the medium variable. In this approxima-+p )- Ther.e IS no symmetry_ln exchanglragqnd b. In fact
tion the dispersion of the response is taken into account anid'® evolution of the field variablg can be written
this causes phase variations to influence the amplitudes. - 2 _|hf2

. . . &0t + Ox 5q(|a| |b| ).

Thus, we have the simplest approximate theory to describe
the Raman spike phenomenon. We will show that nevertheEven if|al?~[b[?[,-o< 0, there will be no flow of energy from
less our analytical description of the Raman spike formatiorP to a Note also that an initial homogeneous phasebin
reproduces the stagnation effect and yields an approximatays no role in the dynamics.
formula for the spike width. The comparison of our analyti- We discretized Eqgs(1) and (2) in both x andt using
cal results with the results of the numerical simulation showd1eun’s order-2 Runge-Kutta method and advance via the fol-
qualitative and in some cases quantitative agreement. lowing algorithm.

The paper is organized as follows. After introducing the (i) Givena(x,t) andb(x,t) for a givenx computeq(x,t)
original model in Sec. ll, we describe the approximationby integrating Eq(2) in t for the initial datumgq(x,t=0)=0.
used and obtain the zero ord@tandard Raman modeih (i) Advance toa(x+dx,t) andb(x+dx,t) for all t by in-
Sec. lll. The front effects corresponding to the first order argegrating(1) in x.
described in Sec. IV. Dispersion effects corresponding to the (iii) Go to step(i) with x=x+dx.
third order are given in Sec. V and analyzed in Sec. VI. We The scheme is started at st@pfor x=0 and the quality of
present numerical results confirming this approach in Sedhe computation is monitored by evaluating the relative error
VIl and conclude in Sec. VIII. in |651|2+|b|2. In all the runs presented it remained smaller than

II. ORIGINAL MODEL 10°.

. -~ . IIl. SYSTEMATIC APPROXIMATION: THE FIRST ORDER
The system of equations describing the nonstationary

stimulated Raman scattering can be writter] £ The equation describing the evolution of the variagle
Ja b contains the product of the amplitudes of the interacting
—=gb, —=-q*a, (1) fields. This suggests to use the variablesab* and n
28 X =a*a—Db* Db, so that the principal equations take the form
Jdo
aq 29 _ _
~+Iq=-gab*, 2 ax A ®)
where a,b are the amplitudes of the electromagnetic field an
and q is the amplitude of the mediuni. is the damping e 2(qo* +q* 0), (6)

coefficient andy is the amplification coefficient. This system
of equations may be presented in a dimensionless form by

rescalinga,b, a=a/gY? andb=b/g2. Sa_q +q=-¢o0. (7)
One gets, omitting the tildes, ot

Ja b The formal integration in Eq5) leads to

—=qb, —=-g*a, 3

ax = o S (R S S

q=-¢lo Sﬁt e 2 e PO L
99
2 +q=-cab*, (4)  which written as an infinite expansion is an exact solution of

Eg. (4), which can be obtained by integration by parts.
wheree=1/I" is a small parameter because we consider the In the first-order approximation, the medium variable fol-
case of a large dissipation. lows instantaneously the field variables:
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g=-€o.

This is a well-known approximatiofil1] where the intensi-
ties|al,|b| can be calculated exactly. We get

|al?(x,t) = D*(t) 9

1+ pZeZEsz’
p2e26D2X
1+ pzezesz'

Here we introduce=e"? so that the key quantity in Eq&9)
and (10),

[b]%(x,t) = D?(t) (10)

pZeZEDZX — eZ(esz— ) )

We immediately see that the distancegpast which a signifi-
cant transfer of energy occurs is

(11

which we will refer to as the stagnation distance. Note tha

this value is proportional to the dissipation coeffici€hand
is therefore large. We will find this quantity throughout this
work.

To measure energy transfer between maalesdb, it is
convenient to introduce the Raman transfer coefficient

+oo

|al?dt

Tt
| e
such that G<R(x) < 1. Initially a=a, so thatR(x=0)=0. Asx
increases decreases so th&increases towards 1. Assum-
ing a, to be a rectangular initial pulsgag|?(t)=H(t-t;)
—-H(t—t,) whereH is the usual Heaviside function, we get
ftz|a0|2dt:t2_tl and

RX)=1- (12

+0oc l+ 2
f la2dt= (t, - t) —————,
" p2e2(1+p ) ex +1
so that
21+l ex _
R(X) = p*— (13

p eZ(1+p2)eX+ 1

In Fig. 1 we plot|a(x,t)|?> as a function of timet for x
=3, 4, 5, 6, and 7 for both the solution of the partial differ-
ential equation system, Eq8) and(4), shown as a solid line
and the zero-order approximati¢® shown as a dashed line.
The initial pulse is given by

ap(t) = 0.5tanh (t - t))/w] — tanh (t - to)/w]},

wheret;=20 andt,=80 are, respectively, the front and back
ends of the pulse and the front widith=2. The left(right)
panel of Fig. 1 corresponds to 20 <35(70<t<85). The

(14)
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FIG. 1. Plot of|a(x,t)|? as a function ot for different values of
x for the numerical solutiofisolid line) and the zero-order approxi-
mation (9) (dashed ling The parametefy=5.

corresponding to the incoming or outgoing fronts.

Despite this disagreement on the fronts, the estimation
(13) of the Raman transfer coefficient shown in Fig. 2
matches fairly well the one obtained from the full numerical
solution. Since the pulse is long compared with the typical
{ime 1M (=1 here, the errors made at the front ends are
compensated and the approximation is good. This would not
be the case for a short pulse.

It seems clear that the transient effects occurring near an
incoming or outgoing pulse cannot be captured by the zero-
order approximation and that higher-order terms are needed.
In the next section we include these higher-order terms, lim-
iting ourselves to the second-order time derivative.

IV. SECOND ORDER: FRONT EFFECTS

We now consider the evolution of interacting waves up to
ordere?. We substitute the corresponding approximation for
g in the initial system of equations to obtain

1o Jdo
-——=nlo-e—|, (15)
g dX ot
1n dlof?
——:—2(2|0|2—8 o ) (16)
g X ot

For simplicity, we rescale the andt variables ax’ =ex and
t'=t/e. We introduce the real variablp according to the

1

08 r

04 1

Conversion factor

12

FIG. 2. Computation of the Raman transfer coefficient vs the
positionx for the numerical solution of Eq$3) and(4), shown as

zero-order approximation predicts correctly the field deplepoints and the analytical expressitiB) assuming a Heaviside dis-

tion in the center of the pulse but fails for the valuest of

tribution ay(t), shown as the solid line. The parameter5.
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definition p=20 exp(—-i¢) so that we now only have real
variables which satisfy the system of equations where we
have omitted the primes:

P,

+n—=np, 17
X at P (7
on  1op? 5
— - =-p5 18
ox 2 ot P (18
FIG. 3. Three-dimensiongBD) plot of the incoming front of
20 2] Fig. 1. The left panel shows the solution obtained from the charac-
5 + nE =0. (19) teristics of the approximate modé&23) while the right panel gives

the full numerical solution of Eqg3) and (4).
If we remember thatr=ab*, one finds thatp=arga—argb,
and forx=0, ¢ is the function which determines the phase 1 D2
flip process. The system of equations given above admits the Xo= ?atan Ttanl"(y) .
conserved quantity with respect xo
Expressiong24) and(25) give n andt in implicit form and
_ —ra2 2 .
p?+n? = D(t) = [ag(t) + bp(H I, (20)  therefore need to be solved numerically.
This relation allows us to consider only two equations, one We.have i'ntegrate.d numgrically the gharacteristic .ordi—
for the difference of the squares of the interacting waves anfa"y differential equationt23) in x and obtained the solution

another for the phase differende in the form of characteristictg, ), n(ty,x). In Fig. 3 this
estimation is compared to the full numerical solution of Egs.

Jn  an 49D 0 (3) and (4) for the incoming front of Fig. 1. The results are
polipnial Sl (n°-D"%, (21)  shown in the form of 3D plot§a(x,t)|%; on the left panel is
the solution given by the characteristics while the full nu-
merical solution is given in the right panel. For largehe
¢ + nﬂ_(b -0 (22) plots on the left panel are curved because the wave breaks;
IX ot ' i.e., it becomes multivalued. The approximate mo@a) is

) ) o therefore not sufficient to describe an incoming front.
These equations agree with the initial syst&nhup to order  gecond-derivative terms should be included to yield a dy-

2— 2 . .. .
e°=1/T% namics similar to the one of Burgers equation.

V. ANALYSIS OF THE CHARACTERISTIC EQUATIONS

FOR AN INCOMING FRONT VI. DISPERSION EFFECTS: THIRD-ORDER

APPROXIMATION
We now proceed to study the effect of an incoming front
using Egs.(21) and (22). We first simplify the right-hand
side of the equation fon by writing it n>-f(t) wheref(t)

Let us now consider terms of E¢8) up to third order
with respect tce. The substitution of expression

=D3D-20D/dt). Then we write the equations in character- do 2(920
istic form q=-elo-e+eg (26)
dn_ dt _ into the first two solutions of E(5) results in the following
—=n“-f(t), —=n. (23 S
dx dx system of equations:
The equation fom can be integrated using separation of 1do _ do  ,Fo
- . =nloc—e—+¢ , 27
variables, and we obtain & OX ot at?
n=- V,'f(t)tan}[\,rf(t)(x— XO)] (24) 14n i (9|O'|2 2(92|0_|2 , Jo |2
=—=-2 20—+ 5 -2 —| |.
and & dX at at at
[erey 28)
: cosH (D)~ )] (
=t fo n(§)de=1to- Inl cosi[v’%xo] . (29 Both these equations and the original system of equati®ns
have the first integral with respect xo°+40* o=constt).
where the square root can be imaginary so thatittaah Again we rescalex andt as asx’=ex andt'=t/e and
becomes a tan. The integration constgntan be computed introduce the real variablp according to the definition @
from the initial condition and the relationy/D?=tanHy) =p expi¢). Using the system of equatiof@6) and(28) one
obtained from the definition db. We get gets the following system of equations for the real variables

036601-4



STIMULATED RAMAN SCATTERING ...

p, n, and ¢ where the primes have been omitted:
2

ap  Ip &p g \?
oMo zp[lﬁ)} 29
n_ap__ (a_d)” #p
ox Pa” p{l at a2’ (30
ﬁ_<b+nﬂ_¢_na2_¢:26_¢(m>n an
ax at a2 Tat\ ot ’

where again the conservation 1420) holds.

PHYSICAL REVIEW E 71, 036601(2009

no=ajl-exg-2y)], D?=ail+exg-2y)];

then, the constant of integratio(t,) can be rewritten as
Xo(t)) =Y D?f(t;) ™2 Substituting this expression into Eq.
(37) leads to

n(x,to) = — D?tanHD?f(tg)x — y}. (39

So Egs.(36) and (39) allow us to write the expression
defining the characteristics:

1 cosHy - D?f(ty)X]
(to) Iog{ coshy } '

t:to—f (40)

Since we want to take into account only effects resultingFrom this equation one can extragis a function of andx
from the phase-flip process, we will neglect the termsand substitute it into Eq(39) to yield the solution of the

dIn(p)/ét and &p/ 2. Furthermore, we will assume thBx

does not vary with time; i.e., we place ourselves in the cen-
tral part of the rectangularlike initial pulse. Using these ap-
proximations the system of equatioi®9)—(31) takes the

form
(9>(+n07t (n D){l P , (32
&—(ﬁ+n&—d’:0. (339
X ot

These equations can be written in the characteristic fa:9h

at_ ~ dé_
dx ' dx

dX—(n D)[l P .

0, (34)

(35)

From Egs.(34) it follows that ¢= ¢(t;) and the expression to

find characteristics,

tzto’ff n(§de, (36)
0

where¢ is the variable of the characteristic. From E85)
we can compute(é) as

n(X,to) = — D?tanKD3f(to)[ X = Xo(to) I},

wherexy(ty) is a constant of integration and the functifity)

is defined by
dg\?
f(t)) =1 _<E> :

(37)

where the derivative with respect tas calculated at=t,,

and as¢=d¢(ty)=p(x=0,tp), its value can be calculated at
x=0. Thus the functiorf(ty) reflects the phase flip on the
initial pulseb of the interacting waves. The constant of inte-

grationxy(tp) is defined by the initial condition
n(x = 0,ty) = Ny = D?tanH D?f (t)Xo(to)}. (38)

If we use EQq.(38) and the definitions ofi andD, we obtain

problem under consideration:

n(x,t) = — D2taniD?f(ty(t,X))X — ¥}, (41

a%(x,t) = 0.5D71 - tanHD?*f(to(t,X))x— 1}]. (42

There is an intrinsic difficulty in this procedure due to the
fact that the characteristics can cross so that there might not
be a uniqug, for a givent andx. In particular we will see
that around the spike region characteristics will cross. Nev-
ertheless, it is possible to understand what is going on by
using asympotics in the regions away from where the char-
acteristics cross. We do this in the next section.

VII. ANALYSIS OF THE CHARACTERISTIC EQUATIONS
FOR THE RAMAN SPIKE

As shown by expressionig0) and(42) the principal prob-
lem is to determine the auxiliary functiag(t,x), from the
equation of characteristics, E@0). To do it we will use the
numerical solution of this equation. However, it is possible to
obtain some information for small or larg& using
asymptotic expansions of the functityit,x). We write

1 1
t=ty+ ¥In[cosk(D2fx)] + ?In[l - taniD?fx)tanh y)].

(43

Forx small the above expression can be expanded to yield, at
first order,

t =ty + D2 tanh(y) =ty + Npx. (44)

This expression can be immediately deduced from the char-
acteristic equation givinglt/dx, Eq. (36). It is correct even
in the spike region as long d&’fx<1. For larger values of
X it is necessary to distinguish the region whéreO, lead-
ing to a spike from the rest of the domain whére 1.

Let us consider this case first. Then one can approximate
the expressiori43) for largex~ 2y/D? by

t=t,+ 2ytanhy) - D’ tanH(y). (45)

Notice how the slope of the#x) curve—i.e., the direction of
the characteristic—changes as one crosses the stagnation dis-
tancex,=y/ D>

The situation in the spike region can be analyzed using
the expression fon, Eq. (41). Inside the spike region the
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|af? Let Agsbe the width of the RS pulse given by half of the
amplitude—i.e.,Ags=2(t; -t,), where the instant; is de-
fined by the conditiora?(x,t;)=0.5D? andt,, is the position
of the minimum of the functiorf(ty). Using Egs.(42) and
(46) we can obtain the equation

2
a to(ty,X) — t; Y Xc
— H(— =1l-——=1-—. 48
452>%¢ 5 D?x X (48)
t Note how the stagnation distanggappears again. Further-

more, if Xx<x., the right-hand side is negative so that no
FIG. 4. 3D plot of the pump amplitudk|?(x,t) obtained by  value ofty can be found and there is no Raman spike forma-
direct integration of the original equatiori8) and (4). The initial  tion. Hence we obtain the stunted grow#tagnation of Ra-
phase flip is fort=t;=40 and the parameters are=5 and § = man transformation once again. From the definition of the
=0.011. stagnation distance, one can see that in dimensional vari-
ablesx. is proportional to the damping coefficieAtand to
argument of the tanh im, D2f(ty(t,x))x—y<0, even for the initial depletion coefficieny.

large values ok so that there is no depletion. In this region ~ Let us now proceed to further analyze E4g) in order to
the characteristics follow=ty+D2x=~ty+nyx which is very  estimate the width of the Raman spike. For that denote

close to Eq.(44) for large y. On the sides of the spike 0 48
< f<1 so that the argument of the tanh can go through 0 but 6‘1‘ = —2<1 - X—C)
for a larger stagnation distance thgn To summarize, out- ar X

side the spike region we expect the characteri_stic CUrves 1@y inat Eq(48) can be written as
bend smoothly from the behavi¢44) to (45) asx increases

while inside the spike region they will follow E¢44). There cos to(ty,X) =t} 4 (49)
is also an intermediate region around the spike where the 5 €

characteristic curves will shift to Eq45) but for x>Xx.. _ _

These sets of characteristic curves will cross as we will showpince the parametes is very small because of the smallness

in the next section, leading to shock formation. of 6, the argument of the cosh function in Eg9) is large so
To understand things quantitatively let us now give a prethat the function can be approximated by an exponential. We
cise form of the phase-flip function. We chose obtain
- to(ty,X) —t 2
_ _ ﬁ t tf ex[<01’—f> - =
d(x=0,t) = 2[1+tanf<—5 )] 5 €

wheret; is the location of the phase jump aadits ampli- S0 that_tO(tl’X):tf+5In(2/61)' If the functionty(t,x) can be
tude. Whena,= we speak of phase flip. With this choice 2PProximated byo=~t=ngx, thent, =t;+nex+5In(2/e,). But
the functionf(ty) takes the form in the framework of the approximation under consideration

tn=ti+NgX, and henceArs=265In(2/€;). From this expres-

af to—t; sion and the definition of the parametgrone gets
f(ty) =1 - —5sech . (46)
48° 5 s | &
Xc
Ars=-ZIn| —|1-—]], (50)
The region where the functiof(ty) has a minimum will be 2 | 4a X

named theRaman spikgRS) region If the paramete is  \yhere it was assumed that(x—x,) <x; i.e., the distance

chosen to be small, the RS region is very narrow. Outside,,ay fromx_ is small large enough. It is interesting that for
this regionf(t) is equal to 1. Hence we can write x— oo the width of RS pulse approaches the limiting value

a%(x,t) = 0.5D9 1 - tanD?*x - y)]. (47) Ags= 8In(2a,/6).

It shows that up tax= (y—1)/D? the value of the intensity of For §=0.5 this limit is equal to 1.27. When the distance
the pump wave i®(x,t)=D? and that forx=x.~ y/D? this  approaches the stagnation distangethe width of the RS
value decreases down to @5 Only inside the RS region Ppulse increases. Hence the Raman spike forms only if
does the intensity of the pump wave not vary. This results in> X, & feature that we can clearly see in Fig. 4.

the formation of a Raman spike. Figure 4 shows a 3D plot of
the pump fielda(x,t)|? solution of the original equation)

and (4) where we chose the Heaviside-like initial pump and
Stokes distributior(14). In this case the middle of the pulse ~ We present here numerical solutions of the full SRS equa-
is such thaD=1. We tooky=5 and clearly see in Fig. 2 that tions for the spike which confirm the analysis done previ-
the pump field starts getting depleted only past5. Thus  ously. Equationg1) and (2) have been integrated using the
our estimation of the stagnation distance is a good one. method indicated in Sec. Il. We first examine the influence of

VIIl. NUMERICAL RESULTS AND DISCUSSION
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t
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FIG. 5. Influence of flip time on the formation of the Raman
spike. |aj?(x,t) for x=2, 4, 6, and 8 as a function dffor three
different flip timesé=0.1 (solid line), 1 (medium dashed lineand
3 (short dashed line The amplitude of the flip isr and the other
parameters are as in Fig. 4.

FIG. 7. Characteristic curve$x) for different values of; (solid
line). The parameters are the same as for Fig. 4. The dashed line
indicates the position of the maximum of the spike in the numerical
solution of the full system.

the flip time and amplitude on the formation of the spike.  we now compare the position and half width of the Ra-
Figure 5 showsa(x, )| as a function ot for x=2, 4, 6, " man spike obtained from the direct solution of E¢®. and

and 8 with a Raman spike. The calculation has been done fqp) and the estimates given by the characteristic equations.

a flip amplitudea; =7 and three values of flip timé=0.1  Figure 7 shows the characteristic curviéz) for different

(.SOI'd lin), 1 (medium dashed |'If)e and $(short dashed values ofty around the spike instatg=t;. As expected from

!['igﬁ)'Of‘tsheexrr’sg:(fj"f“égntgg gég\r’]'?gz Se_Ct'/OSZ’EZ TV";‘]Z':gStafhe analysis of the previous section, one sees the character-
. phase Hip | JOF X =y ! istic curves away from the spike region shift smoothly from

X is the stagnation distance. Notice how the amplitude of th(%he behavior(44) to (45) asx>x.. In the spike region the

iglnkt?arrer?oilgi lofthc:ardaenrq ﬁitLOJetZic]:S; glsﬁiagr;ascég ttge4 characteristics are straight and around the spike one can see

and 6 yThe d_eca s evzn stron er)ll‘m:3 for which the the transition from(44) to (45) for a stagnation distance

<pike i'S barel no)':iceable 9 larger thanx,. Observe how the characteristics cross xor

P . y : . >X. indicating a shock. In fact there are multiple shocks as

The mfluepce .Of the phase change on thez Raman_sp|k own by the crossings seen for the curves suchtglst; in

can be seen in f|g._6. There we compute, t)|* as previ- the right top part of the graph. Fty>t; all the curves seem

pusly but tooks=1 fixed and took three value; O.f the phaseto accumulate along a line parallel to E45). This set of

jump &=, m/2, and /4. The results are similar to the ., o5 shows the limitation of the our approach which can

ones shpwn in Fig. 5. No spike can be sgenxfcﬂxc and the predict the kinematics of the Raman spike as it is created,
spike dies off for6=/4 whereas it is still weakly present

for 6=m/2. n = - D?tan{ D?f(t - D?x tanH y))x — v], (51)
These two figures show the importance of the ratibs.

If as/ 5>, a Raman spike is created and subsists for a fedfUt breaks down after shocks are formed. In Fig. 7 we plot

stagnation distances. On the contranyajf <, the spike the maximum of the spike observed in the numerical solution

is weak and short lived. ’ of Egs.(1) and(2) and one can see that this position agrees
well with the one given by the accumulation point of the

1

characteristics fot,>t;. The result is clearly seen in Fig. 8
08t 48
o L 46 ¢
s [
0.4 | -
S 4}
8
:'(%'
8 42
35 40 45 50 55 a0 7 , . . .
t 0 4 8 12

FIG. 6. Influence of the amplitude of the phase change on the
formation of the Raman spikéal|?(x,t) for x=2, 4, 6, and 8 as a FIG. 8. Time position of the maximum of the Raman spike
function oft for three different phase changesmofsolid line), 7/2 corresponding to Fig. 4 as a functionofsolid line). Thet position
(medium dashed lingand /4 (short dashed lineoccurring during ~ where the phase af is equal to -7/2 is given by the dashed line.
atimes=1. The linet=t;+x is given by the short dashed line.
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the field variable. Since the equations describe complex
fields, we have studied separately the influence of the ampli-
tude and phase of the waves. This provided a better under-
standing of the phenomenon.

Concerning the amplitude, the zero order of the approxi-
mation yields the well-known theory for continuous waves.
At first order we obtain a hyperbolic system of equations
which exhibits wave breaking. At this stage it does not give
accurate front dynamics but it could probably be refined to
ol o do so. The simple model we introduce allows one to under-

0 02 04 5 06 08 1 stand how energy transfer occurs between the different com-
ponentsa andb of the field. In particular we show that this

FIG. 9. Half-width of the Raman spike as a function&fthe  transfer is monotonous and occurs after a stagnation distance
flip time for the numerical solution of the full systefsolid line),  Xc Which we specifically compute from the parameters of the
for a distancex=2. x,=2y/D?=10. The analytical expressidqs0) model.

is given as the dashed line. The other parameters are the same as forFor the phase effects we provide a good description of the
Fig. 4. Raman spike phenomenon in the case of waves of constant

amplitude through a simple system of hyperbolic partial dif-

. . . ferential equations for the population difference=|al?
where we plot the position of the maximum of the spike as a_|b|2 and tﬂe relative phase gf F:he fields. We ShOV\|/ |that a

function ofx. On the same picture we give tkfevalue such P o - -

thatq(x,t* )= r/2 and this follows the posion of the spike. 504G raons in one of the fieds If the radia/ 3 8 [arge

In Fig. 9 we compare the width of the Raman spike withenoygh. From the characteristic curves of the system we ob-

expression(50) for a range of values of and see that there (ain the time instant and duration of the Raman spike as a

is a fairly good agreement. function of the propagation distance in the medium. These
estimations are confirmed numerically.

half width of spike
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