
Stimulated Raman scattering with strong damping: A simple theory of the spike phenomenon

J.-G. Caputo1,2,* and A. Maimistov3,†

1Laboratoire de Mathématiques, INSA de Rouen, Boîte Postal. 8, 76131 Mont-Saint-Aignan cedex, France
2Laboratoire de Physique théorique et modelisation, Université de Cergy-Pontoise and C.N.R.S., 95031 Cergy-Pontoise Cedex, France

3Department of Solid State Physics, Moscow Engineering Physics Institute, Kashirskoe sh. 31, Moscow 115409, Russia
sReceived 23 September 2004; published 8 March 2005d

The classical stimulated Raman scattering system describing the resonant interaction between two electro-
magnetic waves and a fast relaxing medium wave is studied by introducing a systematic perturbation approach
in powers of the relaxation time. We separate amplitude and phase effects for these complex fields. The
analysis of the former shows the existence of a stagnation distance after which monotonic energy transfer
begins from one electromagnetic wave to the other, and this quantity is calculated. Concerning phase effects we
give the conditions for the formation of a Raman spike from an initial fast and large phase jump in one of the
waves. The spike evolution and width estimated from the reduced model agree with the results from numerical
simulations of the original system.
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I. INTRODUCTION

The investigation of the transient effects in stimulated Ra-
man scatteringsSRSd has a long history. The initial interest
came from the study of Druhlet al. f1g who examined the
interaction of a strong laser pump pulse with a high-pressure
gas. They found that pulses of long duration get completely
depleted except in some cases where a very rapid and short-
lived restoration occurs. Numerical simulations then showed
that this “spike” of pump radiation was connected to a rapid
p phase shift or phase flip introduced in the initial Stokes
wave f2g.

The theory of SRS is based on a very simple system of
equations resulting from the Pluczek model of the interaction
of electromagnetic waves with molecular vibrationsf3,4g.
This is essentially the wave equation coupled to an oscillator
equation. Using a slowly varying envelope approximation
for the fields and assuming the Brillouin resonance condi-
tions on energy and momentum, one can obtain the system of
a three-wave interaction between two electromagnetic waves
and a medium wavessee, for example,f5gd. This system is
interesting for its mathematical properties and can be found
in many fields. First, in the limit of zero damping Chu and
Scott f6g showed that it can be written as zero-curvature
conditions for two differential operators, so that an inverse
scattering transformsISTd methodf7g could be used to solve
it. However, IST methods are generally used to solve Cauchy
problems where one is given all the field data for all space
coordinates at an initial timet0. The theory of SRS leads to a
boundary value problem where the fields are given for all
times at a fixed locationx0. As illustrated inf8,9g the IST
method can be developed in this case as well but one needs
to check independently that the potential decays sufficiently
fast at infinity. This approach was recently validated for the
model with group velocity dispersion by direct comparison

with the numerical solution of the problemf10g.
From another point of view the SRS is an example in

optics of the very important phenomenon of three-wave in-
teraction. Its specificity is that two of the waves have equal
velocities. A second well-known example is Mandelstam-
Brillouin scattering where an optical wave interacts with
acoustic phonons. As well as SRS this interaction is now
used to amplify directly laser pulses propagating in an opti-
cal fiber f11–13g. Second-harmonic generation in noncol-
linear beams is another example of a three-wave interaction.
Overall this phenomenon is present in much of condensed
matter physics, from the scattering of spin waves on phonons
f14g to the nonlinear optics of Bose-Einstein condensates
f15,16g. Therefore the results obtained for SRS can be trans-
posed to these other contexts.

Here we are interested in the limit where the damping of
the medium vibrations is large, so that a perturbation theory
derived from the IST method is not applicable. This is pre-
cisely when one observes the Raman spike, where the pump
radiation after being depleted displays a sharp burst of en-
ergy, which lasts a small fraction of its initial duration. This
phenomenon first observed in gases can be studied via nu-
merical simulations of the full equationsf2,17g. These show
that the Raman spike can be seen only for large dissipation,
that it appears with some delay, and that its amplitude decays
for increasing propagation distances in the medium. Our aim
is to understand how this occurs—more precisely, tosid un-
derstand quantitatively the energy transfer from one compo-
nent of the fieldsthe pumpd to the othersStokes waved, in
particular estimate the distance necessary for a given trans-
fer, sii d explain the time delay of the Raman spikesstagnation
effectd, siii d explain the position, width, and amplitude of the
Raman spike as a function of the initial phase flip in the
Stokes wave, andsivd understand the evolution of the fronts
of the pump pulse.

We consider a simplified situation where the pump and
Stokes pulses are not Gaussian but almost rectangular. In this
case we will see that the effects of phase and amplitude can
be separated so that the magnitude of the wave intensities
can be assumed to be independent of time in the spike re-
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gion, located in the middle of the pulses. The medium vari-
able can be expressed as an integral of the product of the
amplitudes of the interacting waves. This can be expanded
using as a small parameter 1/G whereG is the damping of
the medium variable. If we limit ourselves to the leading
term in this series, we obtain the well-known equations de-
scribing SRS for continuous waves and within this approxi-
mation we find the Raman transfer coefficient. At the next
order we obtain a system of equations where the evolution of
the pump amplitude is independent from the one of the
phase. Though it cannot take into account the phase flip ef-
fects causing the Raman spike, it should be adequate for the
transient phenomena occurring on the fronts of the interact-
ing pulses. To get coupling between the phase and ampli-
tudes of the pulses we need to consider the third-order term
in the expansion of the medium variable. In this approxima-
tion the dispersion of the response is taken into account and
this causes phase variations to influence the amplitudes.
Thus, we have the simplest approximate theory to describe
the Raman spike phenomenon. We will show that neverthe-
less our analytical description of the Raman spike formation
reproduces the stagnation effect and yields an approximate
formula for the spike width. The comparison of our analyti-
cal results with the results of the numerical simulation shows
qualitative and in some cases quantitative agreement.

The paper is organized as follows. After introducing the
original model in Sec. II, we describe the approximation
used and obtain the zero ordersstandard Raman modeld in
Sec. III. The front effects corresponding to the first order are
described in Sec. IV. Dispersion effects corresponding to the
third order are given in Sec. V and analyzed in Sec. VI. We
present numerical results confirming this approach in Sec.
VII and conclude in Sec. VIII.

II. ORIGINAL MODEL

The system of equations describing the nonstationary
stimulated Raman scattering can be written asf18g

]a

]x
= qb,

]b

]x
= − q * a, s1d

]q

]t
+ Gq = − gab* , s2d

where a,b are the amplitudes of the electromagnetic field
and q is the amplitude of the medium.G is the damping
coefficient andg is the amplification coefficient. This system
of equations may be presented in a dimensionless form by

rescalinga,b, a= ã/g1/2 andb= b̃/g1/2.
One gets, omitting the tildes,

]a

]x
= qb,

]b

]x
= − q * a, s3d

«
]q

]t
+ q = − «ab* , s4d

where«=1/G is a small parameter because we consider the
case of a large dissipation.

The initial conditions for the system are

x = 0, a = a0std, b = a0stdr expifstd,

whereastd→0 for utu→` and the boundary condition

t = − `, q = 0,

where the last equation indicates that the medium is initially
in the ground state. The quantityr=e−g is the initial ampli-
tude difference betweena and b; in most cases, we will
assumer!1 and uaux=0 to be of order 1 so thatuaux=0
@ ubux=0. The termfstd is a time dependent initial phase. In
the following we will assume thata0, g, andf are real.

Equationss3d and s4d are such thatD2std;uau2+ ubu2 is
independent ofx and thereforeD2std= uau2+ ubu2=a0

2stds1
+r2d. There is no symmetry in exchanginga and b. In fact
the evolution of the field variableq can be written

«qxt + qx = eqsuau2 − ubu2d.

Even if uau2− ubu2ux=0,0, there will be no flow of energy from
b to a. Note also that an initial homogeneous phase inb
plays no role in the dynamics.

We discretized Eqs.s1d and s2d in both x and t using
Heun’s order-2 Runge-Kutta method and advance via the fol-
lowing algorithm.

sid Given asx,td andbsx,td for a givenx computeqsx,td
by integrating Eq.s2d in t for the initial datumqsx,t=0d=0.

sii d Advance toasx+dx,td andbsx+dx,td for all t by in-
tegratings1d in x.

siii d Go to stepsid with x=x+dx.
The scheme is started at stepsid for x=0 and the quality of

the computation is monitored by evaluating the relative error
in uau2+ ubu2. In all the runs presented it remained smaller than
10−5.

III. SYSTEMATIC APPROXIMATION: THE FIRST ORDER

The equation describing the evolution of the variableq
contains the product of the amplitudes of the interacting
fields. This suggests to use the variabless=ab* and n
=a* a−b* b, so that the principal equations take the form

]s

]x
= − qn, s5d

]n

]x
= 2sqs * + q * sd, s6d

«
]q

]t
+ q = − «s. s7d

The formal integration in Eq.s5d leads to

q = − «Ss − «
]s

]t
+ «2]2s

]t2
− «3]3s

]t3
+ …D , s8d

which written as an infinite expansion is an exact solution of
Eq. s4d, which can be obtained by integration by parts.

In the first-order approximation, the medium variable fol-
lows instantaneously the field variables:
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q = − es.

This is a well-known approximationf11g where the intensi-
ties uau , ubu can be calculated exactly. We get

uau2sx,td = D2std
1

1 + r2e2eD2x
, s9d

ubu2sx,td = D2std
r2e2eD2x

1 + r2e2eD2x
. s10d

Here we introducer=e−g so that the key quantity in Eqs.s9d
and s10d,

r2e2eD2x = e2seD2x−gd.

We immediately see that the distancexc past which a signifi-
cant transfer of energy occurs is

xc =
g

eD2 , s11d

which we will refer to as the stagnation distance. Note that
this value is proportional to the dissipation coefficientG and
is therefore large. We will find this quantity throughout this
work.

To measure energy transfer between modesa andb, it is
convenient to introduce the Raman transfer coefficient

Rsxd = 1 −

E
−`

+`

uau2dt

E
−`

+`

ua0u2dt

, s12d

such that 0,Rsxd,1. Initially a=a0 so thatRsx=0d=0. Asx
increasesa decreases so thatR increases towards 1. Assum-
ing a0 to be a rectangular initial pulseua0u2std=Hst− t1d
−Hst− t2d whereH is the usual Heaviside function, we get
e−`

+`ua0u2dt= t2− t1 and

E
−`

+`

uau2dt = st2 − t1d
1 + r2

r2e2s1+r2dex + 1
,

so that

Rsxd = r2 e2s1+r2dex − 1

r2e2s1+r2dex + 1
. s13d

In Fig. 1 we plot uasx,tdu2 as a function of timet for x
=3, 4, 5, 6, and 7 for both the solution of the partial differ-
ential equation system, Eqs.s3d ands4d, shown as a solid line
and the zero-order approximations9d shown as a dashed line.
The initial pulse is given by

a0std = 0.5htanhfst − tid/wtg − tanhfst − ted/wtgj, s14d

whereti =20 andte=80 are, respectively, the front and back
ends of the pulse and the front widthwt=2. The leftsrightd
panel of Fig. 1 corresponds to 20, t,35 s70, t,85d. The
zero-order approximation predicts correctly the field deple-
tion in the center of the pulse but fails for the values oft

corresponding to the incoming or outgoing fronts.
Despite this disagreement on the fronts, the estimation

s13d of the Raman transfer coefficient shown in Fig. 2
matches fairly well the one obtained from the full numerical
solution. Since the pulse is long compared with the typical
time 1/G s=1 hered, the errors made at the front ends are
compensated and the approximation is good. This would not
be the case for a short pulse.

It seems clear that the transient effects occurring near an
incoming or outgoing pulse cannot be captured by the zero-
order approximation and that higher-order terms are needed.
In the next section we include these higher-order terms, lim-
iting ourselves to the second-order time derivative.

IV. SECOND ORDER: FRONT EFFECTS

We now consider the evolution of interacting waves up to
order«2. We substitute the corresponding approximation for
q in the initial system of equations to obtain

1

«

]s

]x
= nSs − «

]s

]t
D , s15d

1

«

]n

]x
= − 2S2usu2 − «

] usu2

]t
D . s16d

For simplicity, we rescale thex andt variables asx8=«x and
t8= t /«. We introduce the real variablep according to the

FIG. 1. Plot ofuasx,tdu2 as a function oft for different values of
x for the numerical solutionssolid lined and the zero-order approxi-
mation s9d sdashed lined. The parameterg=5.

FIG. 2. Computation of the Raman transfer coefficient vs the
positionx for the numerical solution of Eqs.s3d and s4d, shown as
points and the analytical expressions13d assuming a Heaviside dis-
tribution a0std, shown as the solid line. The parameterg=5.
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definition p=2s exps−ifd so that we now only have real
variables which satisfy the system of equations where we
have omitted the primes:

]p

]x
+ n

]p

]t
= np, s17d

]n

]x
−

1

2

]p2

]t
= − p2, s18d

]f

]x
+ n

]f

]t
= 0. s19d

If we remember thats=ab*, one finds thatf=arga−argb,
and forx=0, f is the function which determines the phase
flip process. The system of equations given above admits the
conserved quantity with respect tox:

p2 + n2 = D4std = fa0
2std + b0

2stdg2. s20d

This relation allows us to consider only two equations, one
for the difference of the squares of the interacting waves and
another for the phase differencef:

]n

]x
+ n

]n

]t
= 2D3]D

]t
+ sn2 − D4d, s21d

]f

]x
+ n

]f

]t
= 0. s22d

These equations agree with the initial systems5d up to order
«2=1/G2.

V. ANALYSIS OF THE CHARACTERISTIC EQUATIONS
FOR AN INCOMING FRONT

We now proceed to study the effect of an incoming front
using Eqs.s21d and s22d. We first simplify the right-hand
side of the equation forn by writing it n2− fstd where fstd
;D3sD−2]D /]td. Then we write the equations in character-
istic form

dn

dx
= n2 − fstd,

dt

dx
= n. s23d

The equation forn can be integrated using separation of
variables, and we obtain

n = − ÎfstdtanhfÎfstdsx − x0dg s24d

and

t = t0 +E
0

x

nsjddj = t0 − lnFcoshfÎfstdsx − x0dg
coshfÎfstdx0g

G , s25d

where the square root can be imaginary so that thei tanh
becomes a tan. The integration constantx0 can be computed
from the initial condition and the relationn0/D2=tanhsgd
obtained from the definition ofD. We get

x0 =
1

f
a tanhFD2

f
tanhsgdG .

Expressionss24d and s25d give n and t in implicit form and
therefore need to be solved numerically.

We have integrated numerically the characteristic ordi-
nary differential equationss23d in x and obtained the solution
in the form of characteristicstst0,xd , nst0,xd. In Fig. 3 this
estimation is compared to the full numerical solution of Eqs.
s3d and s4d for the incoming front of Fig. 1. The results are
shown in the form of 3D plotsuasx,tdu2; on the left panel is
the solution given by the characteristics while the full nu-
merical solution is given in the right panel. For largex the
plots on the left panel are curved because the wave breaks;
i.e., it becomes multivalued. The approximate models23d is
therefore not sufficient to describe an incoming front.
Second-derivative terms should be included to yield a dy-
namics similar to the one of Burgers equation.

VI. DISPERSION EFFECTS: THIRD-ORDER
APPROXIMATION

Let us now consider terms of Eq.s8d up to third order
with respect to«. The substitution of expression

q = − «Ss − «
]s

]t
+ «2]2s

]t2
D s26d

into the first two solutions of Eq.s5d results in the following
system of equations:

1

«

]s

]x
= nSs − «

]s

]t
+ «2]2s

]t2
D , s27d

1

«

]n

]x
= − 2S2usu2 − «

] usu2

]t
+ «2]2usu2

]t2
− 2«2U ]s

]t
U2D .

s28d

Both these equations and the original system of equationss5d
have the first integral with respect toxn2+4s* s=conststd.

Again we rescalex and t as asx8=«x and t8= t /« and
introduce the real variablep according to the definition 2s
=p expsifd. Using the system of equationss26d ands28d one
gets the following system of equations for the real variables

FIG. 3. Three-dimensionals3Dd plot of the incoming front of
Fig. 1. The left panel shows the solution obtained from the charac-
teristics of the approximate models23d while the right panel gives
the full numerical solution of Eqs.s3d and s4d.
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p, n, andf where the primes have been omitted:

]p

]x
+ n

]p

]t
− n

]2p

]t2
= npF1 −S ]f

]t
D2G , s29d

]n

]x
− p

]p

]t
= − p2F1 −S ]f

]t
D2G − p

]2p

]t2
, s30d

]f

]x
+ n

]f

]t
− n

]2f

]t2
= 2

]f

]t
S ] log p

]t
Dn, s31d

where again the conservation laws20d holds.
Since we want to take into account only effects resulting

from the phase-flip process, we will neglect the terms
] lnspd /]t and]2p/]t2. Furthermore, we will assume thatD
does not vary with time; i.e., we place ourselves in the cen-
tral part of the rectangularlike initial pulse. Using these ap-
proximations the system of equationss29d–s31d takes the
form

]n

]x
+ n

]n

]t
= sn2 − D4dF1 −S ]f

]t
D2G , s32d

]f

]x
+ n

]f

]t
= 0. s33d

These equations can be written in the characteristic formf19g

dt

dx
= n,

df

dx
= 0, s34d

dn

dx
= sn2 − D4dF1 −S ]f

]t
D2G . s35d

From Eqs.s34d it follows thatf=fst0d and the expression to
find characteristics,

t = t0 +E
0

x

nsjddj, s36d

wherej is the variable of the characteristic. From Eq.s35d
we can computensjd as

nsx,t0d = − D2tanhhD2fst0dfx − x0st0dgj, s37d

wherex0st0d is a constant of integration and the functionfst0d
is defined by

fst0d = 1 −S ]f

]t
D2

,

where the derivative with respect tot is calculated att= t0,
and asf=fst0d=fsx=0,t0d, its value can be calculated at
x=0. Thus the functionfst0d reflects the phase flip on the
initial pulseb of the interacting waves. The constant of inte-
grationx0st0d is defined by the initial condition

nsx = 0,t0d = n0 = D2tanhhD2fst0dx0st0dj. s38d

If we use Eq.s38d and the definitions ofn andD, we obtain

n0 = a0
2f1 − exps− 2gdg, D2 = a0

2f1 + exps− 2gdg;

then, the constant of integrationx0st0d can be rewritten as
x0st0d=gfD2fst0dg−1. Substituting this expression into Eq.
s37d leads to

nsx,t0d = − D2tanhhD2fst0dx − gj. s39d

So Eqs.s36d and s39d allow us to write the expression
defining the characteristics:

t = t0 −
1

fst0d
logHcoshfg − D2fst0dxg

coshg
J . s40d

From this equation one can extractt0 as a function oft andx
and substitute it into Eq.s39d to yield the solution of the
problem under consideration:

nsx,td = − D2tanhhD2fst0st,xddx − gj, s41d

a2sx,td = 0.5D2f1 − tanhhD2f„t0st,xd…x − gjg. s42d

There is an intrinsic difficulty in this procedure due to the
fact that the characteristics can cross so that there might not
be a uniquet0 for a givent andx. In particular we will see
that around the spike region characteristics will cross. Nev-
ertheless, it is possible to understand what is going on by
using asympotics in the regions away from where the char-
acteristics cross. We do this in the next section.

VII. ANALYSIS OF THE CHARACTERISTIC EQUATIONS
FOR THE RAMAN SPIKE

As shown by expressionss40d ands42d the principal prob-
lem is to determine the auxiliary functiont0st ,xd, from the
equation of characteristics, Eq.s40d. To do it we will use the
numerical solution of this equation. However, it is possible to
obtain some information for small or largex using
asymptotic expansions of the functiont0st ,xd. We write

t = t0 +
1

f
lnfcoshsD2fxdg +

1

f
lnf1 − tanhsD2fxdtanhsgdg.

s43d

For x small the above expression can be expanded to yield, at
first order,

t < t0 + D2x tanhsgd = t0 + n0x. s44d

This expression can be immediately deduced from the char-
acteristic equation givingdt/dx, Eq. s36d. It is correct even
in the spike region as long asD2fx!1. For larger values of
x it is necessary to distinguish the region wheref !0, lead-
ing to a spike from the rest of the domain wheref <1.

Let us consider this case first. Then one can approximate
the expressions43d for largex<2g /D2 by

t = t0 + 2g tanhsgd − D2x tanhsgd. s45d

Notice how the slope of thetsxd curve—i.e., the direction of
the characteristic—changes as one crosses the stagnation dis-
tancexc=g /D2.

The situation in the spike region can be analyzed using
the expression forn, Eq. s41d. Inside the spike region the
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argument of the tanh inn, D2f(t0st ,xd)x−g,0, even for
large values ofx so that there is no depletion. In this region
the characteristics followt= t0+D2x< t0+n0x which is very
close to Eq.s44d for large g. On the sides of the spike 0
, f ,1 so that the argument of the tanh can go through 0 but
for a larger stagnation distance thanxc. To summarize, out-
side the spike region we expect the characteristic curves to
bend smoothly from the behaviors44d to s45d asx increases
while inside the spike region they will follow Eq.s44d. There
is also an intermediate region around the spike where the
characteristic curves will shift to Eq.s45d but for x.xc.
These sets of characteristic curves will cross as we will show
in the next section, leading to shock formation.

To understand things quantitatively let us now give a pre-
cise form of the phase-flip function. We chose

fsx = 0,td = −
af

2
F1 + tanhS t − tf

d
DG ,

wheretf is the location of the phase jump andaf its ampli-
tude. Whenaf =p we speak of phase flip. With this choice
the functionfst0d takes the form

fst0d = 1 −
af

2

4d2sech4S t0 − tf

d
D . s46d

The region where the functionfst0d has a minimum will be
named theRaman spikesRSd region. If the parameterd is
chosen to be small, the RS region is very narrow. Outside
this regionfst0d is equal to 1. Hence we can write

a2sx,td = 0.5D2f1 − tanhsD2x − gdg. s47d

It shows that up tox<sg−1d /D2 the value of the intensity of
the pump wave isa2sx,td=D2 and that forx=xc<g /D2 this
value decreases down to 0.5D2. Only inside the RS region
does the intensity of the pump wave not vary. This results in
the formation of a Raman spike. Figure 4 shows a 3D plot of
the pump fielduasx,tdu2 solution of the original equationss3d
and s4d where we chose the Heaviside-like initial pump and
Stokes distributions14d. In this case the middle of the pulse
is such thatD=1. We tookg=5 and clearly see in Fig. 2 that
the pump field starts getting depleted only pastxc=5. Thus
our estimation of the stagnation distance is a good one.

Let DRS be the width of the RS pulse given by half of the
amplitude—i.e.,DRS=2st1− tmd, where the instantt1 is de-
fined by the conditiona2sx,t1d=0.5D2 and tm is the position
of the minimum of the functionfst0d. Using Eqs.s42d and
s46d we can obtain the equation

af
2

4d2sech4S t0st1,xd − tf

d
D = 1 −

g

D2x
= 1 −

xc

x
. s48d

Note how the stagnation distancexc appears again. Further-
more, if xøxc, the right-hand side is negative so that no
value oft0 can be found and there is no Raman spike forma-
tion. Hence we obtain the stunted growthsstagnationd of Ra-
man transformation once again. From the definition of the
stagnation distancexc one can see that in dimensional vari-
ablesxc is proportional to the damping coefficientG and to
the initial depletion coefficientg.

Let us now proceed to further analyze Eq.s48d in order to
estimate the width of the Raman spike. For that denote

e1
4 ;

4d2

af
2 S1 −

xc

x
D ,

so that Eq.s48d can be written as

coshS t0st1,xd − tf

d
D = e1

−1. s49d

Since the parametere1 is very small because of the smallness
of d, the argument of the cosh function in Eq.s49d is large so
that the function can be approximated by an exponential. We
obtain

expS t0st1,xd − tf

d
D =

2

e1
,

so thatt0st1,xd= tf +d lns2/e1d. If the function t0st ,xd can be
approximated byt0< t−n0x, thent1= tf +n0x+d lns2/e1d. But
in the framework of the approximation under consideration
tm= tf +n0x, and henceDRS<2d lns2/e1d. From this expres-
sion and the definition of the parametere1 one gets

DRS< −
d

2
lnF d2

4af
2S1 −

xc

x
DG , s50d

where it was assumed thatd2sx−xcd!xc; i.e., the distance
away fromxc is small large enough. It is interesting that for
x→` the width of RS pulse approaches the limiting value

DRS< d lns2af/dd.

For d=0.5 this limit is equal to 1.27. When the distancex
approaches the stagnation distancexc, the width of the RS
pulse increases. Hence the Raman spike forms only ifx
.xc, a feature that we can clearly see in Fig. 4.

VIII. NUMERICAL RESULTS AND DISCUSSION

We present here numerical solutions of the full SRS equa-
tions for the spike which confirm the analysis done previ-
ously. Equationss1d and s2d have been integrated using the
method indicated in Sec. II. We first examine the influence of

FIG. 4. 3D plot of the pump amplitudeuau2sx,td obtained by
direct integration of the original equationss3d and s4d. The initial
phase flip is for t= tf =40 and the parameters areg=5 and d
=0.011.
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the flip time and amplitude on the formation of the spike.
Figure 5 showsuasx,tdu2 as a function oft for x=2, 4, 6,

and 8 with a Raman spike. The calculation has been done for
a flip amplitudeaf =p and three values of flip timed=0.1
ssolid lined, 1 smedium dashed lined, and 3 sshort dashed
lined. As expected from the previous section, no manifesta-
tion of the phase flip can be seen forx,xc=g /D2<4, where
xc is the stagnation distance. Notice how the amplitude of the
spike remains of order 1 for the fast flipd=0.1. On the
contrary ford=1 the amplitude decays asx increases to 4
and 6. The decay is even stronger ford=3 for which the
spike is barely noticeable.

The influence of the phase change on the Raman spike
can be seen in Fig. 6. There we computeduasx,tdu2 as previ-
ously but tookd=1 fixed and took three values of the phase
jump af =p , p /2, and p /4. The results are similar to the
ones shown in Fig. 5. No spike can be seen forx,xc and the
spike dies off ford=p /4 whereas it is still weakly present
for d=p /2.

These two figures show the importance of the ratioaf /d.
If af /d.p, a Raman spike is created and subsists for a few
stagnation distances. On the contrary, ifaf /d,p, the spike
is weak and short lived.

We now compare the position and half width of the Ra-
man spike obtained from the direct solution of Eqs.s1d and
s2d and the estimates given by the characteristic equations.
Figure 7 shows the characteristic curvestsxd for different
values oft0 around the spike instantt0= tf. As expected from
the analysis of the previous section, one sees the character-
istic curves away from the spike region shift smoothly from
the behaviors44d to s45d as x.xc. In the spike region the
characteristics are straight and around the spike one can see
the transition froms44d to s45d for a stagnation distance
larger thanxc. Observe how the characteristics cross forx
.xc indicating a shock. In fact there are multiple shocks as
shown by the crossings seen for the curves such thatt0ø tf in
the right top part of the graph. Fort0. tf all the curves seem
to accumulate along a line parallel to Eq.s45d. This set of
curves shows the limitation of the our approach which can
predict the kinematics of the Raman spike as it is created,

n = − D2tanhfD2f„t − D2x tanhsgd…x − gg, s51d

but breaks down after shocks are formed. In Fig. 7 we plot
the maximum of the spike observed in the numerical solution
of Eqs.s1d and s2d and one can see that this position agrees
well with the one given by the accumulation point of the
characteristics fort0. tf. The result is clearly seen in Fig. 8

FIG. 5. Influence of flip time on the formation of the Raman
spike. uau2sx,td for x=2, 4, 6, and 8 as a function oft for three
different flip timesd=0.1 ssolid lined, 1 smedium dashed lined, and
3 sshort dashed lined. The amplitude of the flip isp and the other
parameters are as in Fig. 4.

FIG. 6. Influence of the amplitude of the phase change on the
formation of the Raman spike.uau2sx,td for x=2, 4, 6, and 8 as a
function of t for three different phase changes ofp ssolid lined, p /2
smedium dashed lined, andp /4 sshort dashed lined occurring during
a timed=1.

FIG. 7. Characteristic curvestsxd for different values oft0 ssolid
lined. The parameters are the same as for Fig. 4. The dashed line
indicates the position of the maximum of the spike in the numerical
solution of the full system.

FIG. 8. Time position of the maximum of the Raman spike
corresponding to Fig. 4 as a function ofx ssolid lined. Thet position
where the phase ofq is equal to −p /2 is given by the dashed line.
The line t= tf +x is given by the short dashed line.
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where we plot the position of the maximum of the spike as a
function ofx. On the same picture we give thet* value such
that qsx,t* d=p /2 and this follows the position of the spike.
In Fig. 9 we compare the width of the Raman spike with
expressions50d for a range of values ofd and see that there
is a fairly good agreement.

IX. CONCLUSION

We have introduced a systematic approximation proce-
dure to simplify the stimulated Raman scattering equations
where the small parameter is the inverse of the damping of

the field variable. Since the equations describe complex
fields, we have studied separately the influence of the ampli-
tude and phase of the waves. This provided a better under-
standing of the phenomenon.

Concerning the amplitude, the zero order of the approxi-
mation yields the well-known theory for continuous waves.
At first order we obtain a hyperbolic system of equations
which exhibits wave breaking. At this stage it does not give
accurate front dynamics but it could probably be refined to
do so. The simple model we introduce allows one to under-
stand how energy transfer occurs between the different com-
ponentsa andb of the field. In particular we show that this
transfer is monotonous and occurs after a stagnation distance
xc which we specifically compute from the parameters of the
model.

For the phase effects we provide a good description of the
Raman spike phenomenon in the case of waves of constant
amplitude through a simple system of hyperbolic partial dif-
ferential equations for the population differencen= uau2
− ubu2 and the relative phase of the fields. We show that a
spike is formed from an initial phase jump of amplitudeaf
and durationd in one of the fields if the ratioaf /d is large
enough. From the characteristic curves of the system we ob-
tain the time instant and duration of the Raman spike as a
function of the propagation distance in the medium. These
estimations are confirmed numerically.
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